
Scalable Distributed Consensus
to Support MPI Fault Tolerance?

Darius Buntinas

Argonne National Laboratory

Abstract. As system sizes increase, the amount of time in which an application can

run without experiencing a failure decreases. Exascale applications will need to address

fault tolerance. In order to support algorithm-based fault tolerance, communication li-

braries will need to provide fault-tolerance features to the application. One important

fault-tolerance operation is distributed consensus. This is used, for example, to collec-

tively decide on a set of failed processes. This paper describes a scalable, distributed

consensus algorithm that is used to support new MPI fault-tolerance features proposed

by the MPI 3 Forum’s fault-tolerance working group. The algorithm was implemented

and evaluated on a 4,096-core Blue Gene/P. The implementation was able to perform

a full-scale distributed consensus in 305 µs and scaled logarithmically.

Keywords: MPI, Fault tolerance, distributed consensus, MPI Comm validate
all, MPI 3

1 Introduction

As process counts in applications grow toward exascale, the length of time an
application can run without experiencing a failure, known as the mean time
between failures (MTBF), decreases. Applications will need to be fault tolerant in
order to be useful on future exascale machines. Checkpointing can provide fault
tolerance to an application without the need to modify it As the failure frequency
increases, however, checkpoints will need to be taken more often, decreasing the
amount of useful work the application can perform between failures.

Whereas checkpointing provides fault tolerance to an application in a trans-
parent manner, when using algorithm-based fault tolerance (ABFT) [1][3][4], the
application is aware of faults and handles them explicitly. The fault-tolerance
working group of the MPI 3 Forum has been working on a proposal [5], that
adds fault-tolerance features to MPI in order to support ABFT applications.
The proposal defines the behavior of an MPI library if processes fail. For ex-
ample, existing operations such as MPI Comm split are now required to either
succeed at every process or return an error at every process, even if processes
fail before or during the operation. The proposal also introduces new functions,

? This work was supported in part by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

such as MPI Comm validate all, that require all processes to return the same list
of failed processes. A distributed consensus algorithm is needed to implement
these operations.

This paper presents a scalable, fault tolerant, distributed consensus algorithm
used to implement the MPI Comm validate all function. The MPI Comm validate
all implementation is evaluated on a 4,096-core IBM Blue Gene/P machine and
shows O(log n) scaling.

The rest of the paper proceeds as follows. In Section 2 we review related work.
In Section 3 we describe the problem. In Section 4 the algorithm is presented.
In Section 5 we evaluate the performance. In Section 6 we conclude the paper
and briefly discuss future work.

2 Related Work

The proposal presented by the MPI 3 fault-tolerance working group [5] has a
fail-stop fault model; that is, failed processes stop sending messages. Transient
failures and network failures, including network partitioning, are not considered
in the proposal, although the working group is considering additional proposals
to address these issues. The proposal also requires the failure detector to be
perfect, as defined in [2]. A perfect failure detector will not report a nonfailed
process as failed and eventually will report all failures to all processes.

The proposal is based on the concept that processes must explicitly recognize,
or acknowledge, failures. When a process performs a point-to-point communi-
cation operation with a failed process, the operation will return an error. The
process can recognize individual process failures locally (i.e., not collectively).
Once the failure is recognized, any communication with that failed process is
equivalent to communication with MPI PROC NULL. Processes can query for
the set of failed processes it has discovered with the MPI Comm validate func-
tion. Note that this function is not collective, and the set of failed processes
returned may be different at different processes.

Collective communication on a communicator with a failed process is not
guaranteed to succeed at every process until the failure is recognized collectively
by using the MPI Comm validate all function. This function returns the same set
of failed processes to all processes and recognizes the failures. This function is
necessary so that the MPI library at all processes can adjust the collective com-
munication patterns as necessary to account for failed processes. This operation
requires distributed consensus.

Two-phase commit [7], three-phase commit [11], and Paxos [9] are the classi-
cal methods for achieving distributed consensus. These algorithms have scalabil-
ity issues in that the coordinator process sends and receives messages individually
from every process. Work has been done to improve scalability in [10] and [8];
however, these solutions are targeted for database systems that might have only
tens or hundreds of committing processes in a large-scale system and are not
sufficiently scalable to be used in exascale systems. The algorithm presented in
this paper uses a reliable broadcast tree to distribute and collect messages, mak-

2

ing the algorithm highly scalable. The Paxos algorithm is tolerant to network
partitioning, which is a failure mode not considered in this paper.

In [6] Fischer, et. al., proved that distributed consensus in an asynchronous
model with one faulty process is impossible in a finite number of steps. Our
algorithm does not guarantee consensus in a finite number of steps; rather, it
will reach consensus with a probability of 1.

3 Problem Description

We present the distributed consensus algorithm as it would be used in the MPI
Comm validate all operation. However, the algorithm could also be used in other
operations requiring distributed consensus, such as MPI Comm split. We first list
the assumptions we make on the environment and then describe the MPI Comm
validate all function.
Assumptions on the environment:

1. The only failures will be process failures. Communication errors are masked
by the MPI implementation. We do not consider network partitioning in this
paper.

2. Process failures will be fail-stop failures. Once a process fails, it will stop
sending messages.

3. Failure detectors are perfect; in other words, nonfailed processes will not be
reported as failed, and all processes will eventually be notified of all failed
processes.

4. Processes do not spontaneously recover after failure. Once a process has
failed, it will remain failed.

5. There will always be a point in time in the future when no processes fail
long enough to allow the broadcast algorithm described below to complete.

The MPI Comm validate all function uses distributed consensus to decide on
a set of failed processes, which must contain every failed process known by any
participating process at the time the function is called. The same set of failed
processes must be returned by the function at every process. If a process fails
during the MPI Comm validate all operation (i.e., after the first process calls the
function and before the first process returns), the set of failed processes returned
may or may not contain the failed processes.

The proposal discusses allowing “loose” semantics for the MPI Comm validate
all operation. The loose semantics would allow, in the case some processes fail
before all processes complete the operation, for one result to be returned to the
processes that failed and another result to the remaining processes. The idea is
that even though different results were returned to different processes as a result
of process failure during the operation, all of the remaining processes received
the same result. Implementing loose semantics would be simpler and faster than
implementing strict semantics. The choice of loose vs. strict semantics would be
left to the user by, for example, setting an environment variable.

3

4 Algorithm

In this section, we give a brief overview of the algorithm at a high level and then
describe the algorithm in detail.

The algorithm is similar to the three-phase commit algorithm except that,
rather than sending and receiving individual messages, a reliable broadcast algo-
rithm is used to send and collect messages. In the BALLOTING phase, after the
root is chosen, the root creates a ballot containing the set of failed processes and
broadcasts it to the rest of the processes. Once the processes receive the ballot,
the responses to the ballot are collected back up the tree. If all the processes
have accepted the ballot, the algorithm enters the COMMIT phase; otherwise a
new ballot is generated, and the BALLOTING phase is repeated. In the COMMIT
phase the root broadcasts a commit message. Once all processes receive the com-
mit message, acknowledgments are collected back up to the root. The last phase
is the ALL COMMIT phase. In this phase the root broadcasts the all-commit
message. Once a process receives the all-commit message, it can return from the
MPI Comm validate all function.

4.1 Basic Reliable Tree Broadcast Algorithm

The reliable tree broadcast algorithm is used to ensure messages are received
by all processes in the presence of process failure. Figure 1 shows the algorithm
in guarded action form. A guarded action consists of a predicate and a set of
statements. When the predicate is true, the action is enabled. When the program
is executed, any enabled action is chosen nondeterministically, and its statements
are executed atomically. A fair scheduler is assumed so that any action enabled
for an infinite amount of time will eventually be scheduled.

Initially, all processes start with direction set to UP. When the broadcast
algorithm is initiated, the root process chooses a broadcast number as a number
larger than any broadcast number it has seen, computes its set of children, and
sends the BCAST message to each child. It then sets its direction to DOWN. When
the BCAST message arrives at the child, the child sets its broadcast number to
the broadcast number of the BCAST message, sets its parent to be the sender of
the BCAST, and computes its set of children. If the child has children of its own, it
forwards the BCAST to its children and sets its direction to DOWN. Otherwise, it
sends an ACK to its parent and sets its direction to UP. Once a process receives
an ACK from every child, it forwards an ACK to its parent and sets its direction
to UP. ACK and NAK messages with old broadcast numbers are ignored. BCAST
messages with broadcast numbers that are not higher than the process’s current
broadcast number are NAKed. If no processes fail, eventually the root will receive
an ACK from every child, and the broadcast algorithm completes.

If a process fails, however, then the failed process’s parent sends a NAK to
its parent and sets its direction to UP. If a process receives a NAK from its
child, the process forwards the NAK to its parent and sets its direction to
UP. Broadcast numbers make sure that once a process receives a new BCAST
message it will ignore any messages from the previous broadcast operation.

4

The set of children is computed by using the compute children function shown
in Figure 1. Given a set of descendants, the process chooses a child from that
set and assigns all processes in the descendant set with higher ranks than the
child as the child’s descendant set. The child and its descendants are removed
from the process’s descendant set, and the process repeats until the process’s
descendant set is empty. The root process’s descendant set is initially set to the
set of all live processes except itself. When a process sends a BCAST message to
a child, it includes the child’s descendant set. The child uses this set to compute
its children and their descendant sets. Note that if, when choosing a child from
its descendant set, a process always chooses a descendant with a rank closest to
the median rank, this broadcast algorithm will generate a binomial tree.

We can make the following observations about the algorithm. If the root
receives an ACK from each child, all processes must have received a BCAST
message (the safety property). If a process other than the root fails, the root
will receive a NAK message. If the root does not fail, the root will eventually
receive either an ACK from every child or a NAK from one of its children (the
progress property). Root failure is not handled by the broadcast algorithm but
will be handled by the caller by, for example, retrying the broadcast as described
below. (Because of space limitations, formal proofs are omitted.)

4.2 Validate-All Algorithm

The validate-all algorithm starts with all processes in the BALLOTING phase.
The root is chosen to be the lowest ranked live process. Since we assume that
processes do not spontaneously recover and that there are no false positives in
a process’s knowledge of failed processes, there will never be more than one live
process that believes it is the root. The root creates a ballot, which consists
of a set of failed processes. A slightly modified version of the basic broadcast
algorithm is used to distribute the ballot and collect votes.

We modify the basic broadcast algorithm by introducing new message types.
Except as described below, the BALLOT BCAST message is treated as a BCAST
message and REJECT ACK and ACCEPT ACK messages are treated as ACK mes-
sages. A BALLOT BCAST carries a ballot along with the broadcast number and
descendant set. Next, rather than replying with an ACK message, a process will
reply with an ACCEPT ACK if it finds the ballot acceptable, that is, if it knows
of no failed processes that are not in the set of failed processes from the ballot
and all of its children (if any) have replied with an ACCEPT ACK. A process will
reply with an REJECT ACK otherwise. This effectively implements a logical AND
reduction operation when gathering the ACK messages. In this way the root will
receive an ACCEPT ACK message from every child only if all processes find the
ballot acceptable. Once the root receives an ACCEPT ACK from every child, it
knows that all processes found the ballot acceptable, and it enters the COMMIT
phase. If some process does not accept the ballot, then the root’s knowledge of
failed processes was stale when it issued the ballot; in this case, the root will
wait for its knowledge of failed processes to be updated and broadcast a new
ballot.

5

Broadcast initiated at root → Choose new bcast num (1)
Compute set of children
Send BCAST to children
direction = DOWN

recv BCAST (2)
∧ msg.bcast num > bcast num → bcast num = msg.bcast num

Parent = sender
Compute set of children
if no children

Send ACK to parent
direction = UP

else
Forward BCAST to children
direction = DOWN

recv ACK from every child (3)
∧ msg.bcast num == bcast num
∧ direction == DOWN → Forward ACK to parent, if any

direction = UP

child fails ∧ direction == DOWN → Send NAK to parent, if any (4)
direction = UP

recv NAK (5)
∧ msg.bcast num == bcast num
∧ direction == DOWN → Forward NAK to parent, if any

direction = UP

recv BCAST (6)
∧ msg.bcast num ≤ bcast num → Send NAK to sender

compute children(descendants)
while descendants 6= ∅

choose child ∈ descendants
descendantschild ← {p ∈ descendants : rank(p) > rank(child)}
descendants← descendants− (descendantschild ∪ {child})
children← children ∪ child

Fig. 1. Reliable tree broadcast algorithm. Initially all processes start with direction

set to UP and bcast num = ⊥.

6

If a process other than the root should fail during the broadcast step, the
root will receive a NAK message. The root then waits for its knowledge of failed
processes to be updated and broadcasts a new ballot. If the root’s knowledge of
failed processes is still not up to date or additional processes have failed, then
the broadcast will fail again, and a new ballot will be issued. The phase repeats
until no new processes fail and the root’s knowledge of failed processes is up to
date. If the root process fails during a broadcast of the ballot, eventually the
next lowest-ranked process will detect that the root has failed, and it will start
the BALLOTING phase over again by broadcast a new ballot.

Because of our assumption that there will eventually be a period of time
where no process fails long enough to complete the broadcast algorithm, we
know that the broadcast will eventually complete, at which point the root will
enter the COMMIT phase.

Once the root has committed, the root broadcasts a COMMIT BCAST mes-
sage to the other processes. If a nonroot process fails during the broadcast, the
root will rebroadcast the message as described above. If the root fails, however,
a new root is appointed; and if the new root has committed, it initiates a new
broadcast of a COMMIT BCAST message. It is possible that when the origi-
nal root failed, some of the processes had not received the COMMIT BCAST
message, so the new root may not have committed. If the new root has not com-
mitted, it does not know whether the original root committed the last ballot.
The new root must then restart the validate-all algorithm by broadcasting a new
ballot. If another process has committed to the previous ballot, upon receiving
the new ballot, that process will respond with a FORCED NAK message con-
taining the committed ballot, which will be forwarded back to the root. When
the root receives the FORCED NAK message, it enters the COMMIT phase and
broadcasts the COMMIT BCAST message including the committed ballot. Upon
receiving the COMMIT BCAST, a process will commit to the ballot included in
the message and enter the COMMIT phase.

When the root receives an ACK from every child, it knows that every process
has reached the COMMIT phase. At this point, even if the root fails, a new ballot
will not be issued, and no process can commit to a different ballot. The root
now enters the ALL COMMIT phase and broadcasts the ALL COMMIT BCAST
message. When a process receives the ALL COMMIT message, the process can
return from the MPI Comm validate all function. However, every process must
continue to handle protocol messages after returning from MPI Comm validate all
in the event that the ALL COMMIT BCAST needs to be rebroadcast.

4.3 Loose Semantics

In order to implement the loose semantics of MPI Comm validate all, the acknowl-
edgment of the COMMIT BCAST and the broadcast of ALL COMMIT BCAST are
omitted, and processes can return from the MPI Comm validate all function once
they reach the COMMIT phase, essentially implementing a two-phase commit.
As before, processes need to continue to respond to protocol messages to ensure
that the COMMIT BCAST broadcast completes.

7

 0

 50

 100

 150

 200

 250

 300

 350

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

L
a

te
n

c
y
 (

µ
s
e

c
)

Number of processes

validate-all
unopt-collectives

collectives

Fig. 2. Comparison of the validate-
all operation with collectives operations
performing a similar communication pat-
tern, using Blue Gene/P optimized col-
lectives and unoptimized collectives.

 0

 50

 100

 150

 200

 250

 300

 350

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

L
a

te
n

c
y
 (

µ
s
e

c
)

Number of processes

strict
nonstrict

Fig. 3. Comparison of validate-all using
strict and loose semantics.

Because the loose semantics algorithm implements a two-phase commit, rather
than the three-phase commit, some processes may reach the COMMIT phase
and return from MPI Comm validate all but then fail before all processes have
committed, leaving no live committed processes. In this case, the validate-all
algorithm will be restarted, and the remaining processes will commit and return
from MPI Comm validate all with a set of failed processes different from the set
previously returned by the failed processes. The user must decide whether to
trade off the correctness of the distributed consensus for the performance gained
by eliminating a phase of the algorithm.

5 Performance Evaluation

To evaluate the validate-all operation, we implemented it as an MPI program.
This allowed us to evaluate the operation at a large scale on a Blue Gene/P
without modifying the MPI implementation. We expect the performance of the
operation implemented this way to be an upper bound on the performance of
the operation if it were integrated into an MPI implementation. The evaluation
was performed at Argonne National Laboratory on Surveyor, a Blue Gene/P
with 1,024 quad-core nodes.

Figure 2 shows the results of the evaluation. As expected, the operation scales
logarithmically. For comparison, we evaluated the time taken to perform a com-
munication pattern similar to that of the validate-all operation using broadcast
and reduction operations. The figure shows the results with optimized collectives
using the Blue Gene/P collective tree network and with unoptimized collectives
using the same torus network that the validate-all operation uses. At full scale,
the validate-all implementation took 305 µs to perform the operation, which is
1.66 times slower than performing a similar communication pattern with unop-
timized collectives. We expect the performance of the validate-all algorithm to

8

improve when the operation is integrated into the MPI implementation, making
the algorithm more responsive to incoming messages.

We also evaluated the performance of the operation with loose semantics.
Figure 3 shows the comparison. The loose implementation performs the opera-
tion 133 µs faster at full scale than does the strict implementation (which is 1.78
times as fast). Depending on the requirements of the application and the fre-
quency at which the application calls validate-all, using the loose implementation
can provide some performance improvement.

6 Conclusion

This paper presented a scalable distributed consensus algorithm used to imple-
ment the MPI Comm validate all operation proposed by the MPI 3 fault-tolerance
working group. The algorithm was evaluated on a 4,096-core Blue Gene/P ma-
chine and was shown to be extremely scalable. The implementation was able to
perform a full-scale validate-all operation in 305 µs and scaled logarithmically.

Using the loose implementation saved only 133 µs over the strict implemen-
tation. Therefore, unless the application performs many validate-all operations,
relaxing the semantics is unlikely to improve the overall performance of the
application significantly.

We intend to implement the MPI Comm validate all operation in MPICH2.
We expect that this implementation will improve the responsiveness of the al-
gorithm and hence improve its performance somewhat. Furthermore, we intend
to use a similar algorithm to implement other operations requiring distributed
consensus, such as the communicator creation routines.

Acknowledgments

This research used resources of the Argonne Leadership Computing Facility at Argonne

National Laboratory, which is supported by the Office of Science of the U.S. Department

of Energy under contract DE-AC02-06CH11357.

References

1. Anfinson, J., Luk, F.T.: A linear algebraic model of algorithm-based fault tolerance.
IEEE Transactions on Computing 37, 1599–1604 (1988)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43, 225–267 (March 1996)

3. Chen, Z., Dongarra, J.: Algorithm-based fault tolerance for fail-stop failures. IEEE
Transactions on Parallel and Distributed Systems 19(12) (December 2008)

4. Chen, Z., Dongarra, J.: Highly scalable self-healing algorithms for high performance
scientific computing. IEEE Transactions on Computers (July 2009)

5. Fault Tolerance Working Group: Run-though stabilization proposal, http://svn.
mpi-forum.org/trac/mpi-forum-web/wiki/ft/run_through_stabilization

9

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32, 374–382 (April 1985), http://doi.acm.org/
10.1145/3149.214121

7. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Ad-
vanced Course. pp. 393–481. Springer-Verlag, London, UK (1978), http://portal.
acm.org/citation.cfm?id=647433.723863

8. Jurczyk, P., Xiong, L.: Adapting commit protocols for large-scale and dynamic
distributed applications. In: Proceedings of the OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I on On
the Move to Meaningful Internet Systems:. pp. 465–474. OTM ’08, Springer-Verlag,
Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-88871-0_33

9. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16, 133–169
(May 1998), http://doi.acm.org/10.1145/279227.279229

10. Ranganathan, S., George, A.D., Todd, R.W., Chidester, M.C.: Gossip-style fail-
ure detection and distributed consensus for scalable heterogeneous clusters.
Cluster Computing 4, 197–209 (July 2001), http://dx.doi.org/10.1023/A:

1011494323443

11. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed
system. IEEE Trans. Softw. Eng. 9, 219–228 (May 1983), http://dx.doi.org/10.
1109/TSE.1983.236608

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (”Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government.

10

